A C1 Map with Invariant Cantor Set of Positive Measure

نویسندگان

  • J. Murdock
  • F. Botelho
چکیده

Many examples exist of one-dimensional systems that are topologically conjugate to the shift operator on Σ2 and are thus chaotic. Most of these examples which have invariant Cantor subsets, have Cantor subsets of measure zero. In this paper we outline the formulation of a C map on a closed interval that has an invariant Cantor subset of positive Lebesgue measure. We also survey techniques used to analyze the dynamics of one-dimensional systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Measures of Minimal Post-critical Sets of Logistic Maps

We construct logistic maps whose restriction to the ω-limit set of its critical point is a minimal Cantor system having a prescribed number of distinct ergodic and invariant probability measures. In fact, we show that every metrizable Choquet simplex whose set of extreme points is compact and totally disconnected can be realized as the set of invariant probability measures of a minimal Cantor s...

متن کامل

Choquet Simplices as Spaces of Invariant Probability Measures of Post-critical Sets

A well-known consequence of the ergodic decomposition theorem is that the space of invariant probability measures of a topological dynamical system, endowed with the weak topology, is a non-empty metrizable Choquet simplex. We show that every non-empty metrizable Choquet simplex arises as the space of invariant probability measures of the post-critical set of a logistic map. In fact we show the...

متن کامل

On the Lebesgue Measure of Li-yorke Pairs for Interval Maps

We investigate the prevalence of Li-Yorke pairs for C and C multimodal maps f with non-flat critical points. We show that every measurable scrambled set has zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure, as does the set of pairs of asymptotic (but not asymptotically periodic) points. If f is topologically mixing and has no Cantor attractor, then typical (...

متن کامل

Topological Conditions for the Existence of Absorbing Cantor Sets

This paper deals with strange attractors of S-unimodal maps f . It generalizes results from [BKNS] in the sense that very general topological conditions are given that either i) guarantee the existence of an absorbing Cantor set provided the critical point of f is sufficiently degenerate, or ii) prohibit the existence of an absorbing Cantor set altogether. As a byproduct we obtain very weak top...

متن کامل

Extreme Value distribution for singular measures

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004